
MuG - CHi-C Pipeline Documentation
Release 0.1

Pablo Acera

Feb 18, 2019

Table of Contents

1 Requirements and Installation 1
1.1 Requirements . 1
1.2 Installation . 2

2 Full Installation 3
2.1 Setup the System Environment . 3
2.2 Setup pyenv and pyenv-virtualenv . 3
2.3 Installation Process . 4
2.4 Setup the symlinks . 5
2.5 Prepare the Python Environment . 6

3 Pipelines 7
3.1 Map and parse CHi-C reads . 7
3.2 Create CHiCAGO input RMAP . 8
3.3 Create CHiCAGO input BAITMAP . 8
3.4 Create CHiCAGO input Design files . 8
3.5 Convert BAM file into chicago input files .chinput . 10
3.6 Data normalization and peak calling . 10
3.7 Run the entire CHi-C pipeline . 11

4 Tools for processing fastq C-HiC files 13
4.1 Map and parser reads . 13
4.2 Create CHiCAGO input files . 15
4.3 Convert bam files into chicago input . 16
4.4 Normalize data and call C-HiC peaks . 16

5 Architectural Design Record 19
5.1 25-09-2018 handling_chr_header branch merge with master . 19
5.2 15-10-2018 mm_mods_for_makebaitmaps branch merge with master 19

6 License 21

7 Indices and tables 25

Python Module Index 27

i

ii

CHAPTER 1

Requirements and Installation

1.1 Requirements

1.1.1 Software

• Python 2.7.12+

• R >=3.1.2

• bedtools

• perl

• HiCUP

• bwa

• GEM

• TADbit

• samtools>1.3

1.1.2 Python Modules

• mg-tool-api

• pylint

• pytest

• pandas

• rtree

1

MuG - CHi-C Pipeline Documentation, Release 0.1

1.1.3 R Modules

• argparser

• devtools

• Chicago

To Run runChicago.py and process_runChicago.py, the R script runChicago.R from https://bitbucket.org/
chicagoTeam/chicago/src/ceffddda8ea392a1e84e4db9593f8fc35ac88048/chicagoTools/?at=master should be down-
loded and added to PATH.

1.2 Installation

Directly from GitHub:

1 git clone https://github.com/pabloacera/C-HiC.git

Using pip:

1 pip install git+https://github.com/pabloacera/C-HiC.git

Install R modules, use the following R code:

install.packages(“argparser”) install.packages(“devtools”) library(devtools) in-
stall_bitbucket(“chicagoTeam/Chicago”, subdir=”Chicago”)

2 Chapter 1. Requirements and Installation

https://bitbucket.org/chicagoTeam/chicago/src/ceffddda8ea392a1e84e4db9593f8fc35ac88048/chicagoTools/?at=master
https://bitbucket.org/chicagoTeam/chicago/src/ceffddda8ea392a1e84e4db9593f8fc35ac88048/chicagoTools/?at=master

CHAPTER 2

Full Installation

The following document is for the full installation of all software required by the C-HiC module and all programmes
that it uses. The document has been written with Ubuntu Linux, although many of the commands are cross platform
(*nix) complient.

If you already have certain packages installed feel free to skip over certain steps. Likewise the bin, lib and code
directories are relative to the home dir; if this is not the case for your system then make the required changes when
running these commands.

2.1 Setup the System Environment

1 sudo apt-get install -y make build-essential libssl-dev zlib1g-dev \\
2 libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev \\
3 libncursesw5-dev xz-utils tk-dev unzip mcl libgtk2.0-dev r-base-core \\
4 libcurl4-gnutls-dev python-rpy2 git libtbb2 pigz liblzma-dev libhdf5-dev \\
5 texlive-latex-base
6

7 cd ${HOME}
8 mkdir bin lib code
9 echo 'export PATH="${HOME}/bin:$PATH"' >> ~/.bash_profile

2.2 Setup pyenv and pyenv-virtualenv

This is required for managing the version of Python and the installation environment for the Python modules so that
they can be installed in the user space.

1 git clone https://github.com/pyenv/pyenv.git ~/.pyenv
2 echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.bash_profile
3 echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.bash_profile
4 echo 'eval "$(pyenv init -)"' >> ~/.bash_profile

(continues on next page)

3

MuG - CHi-C Pipeline Documentation, Release 0.1

(continued from previous page)

5

6 # Add the .bash_profile to your .bashrc file
7 echo 'source ~/.bash_profile"' >> ~/.bashrc
8

9 git clone https://github.com/pyenv/pyenv-virtualenv.git ${PYENV_ROOT}/plugins/pyenv-
→˓virtualenv

10

11 pyenv install 2.7.12
12 pyenv virtualenv 2.7.12 C-HiC
13

14 # Python 3 environment required by iNPS
15 pyenv install 3.5.3
16 ln -s ${HOME}/.pyenv/versions/3.5.3/bin/python ${HOME}/bin/py3

2.3 Installation Process

2.3.1 bedtools and libspatialindex-dev

1 sudo apt-get install bedtools
2 sudo apt-get install libspatialindex-dev

2.3.2 Bowtie2 Aligner

1 cd ${HOME}/lib
2 wget --max-redirect 1 https://downloads.sourceforge.net/project/bowtie-bio/bowtie2/2.

→˓3.4/bowtie2-2.3.4-linux-x86_64.zip
3 unzip bowtie2-2.3.4-linux-x86_64.zip

2.3.3 HiCUP

1 cd ${HOME}/lib
2 wget https://www.bioinformatics.babraham.ac.uk/projects/hicup/hicup_v0.6.1.tar.gz
3 tar -xzf hicup_v0.6.1.tar.gz
4 cd hicup_v0.6.1
5 chmod a+x *

2.3.4 SAMtools

1 cd ${HOME}/lib
2 git clone https://github.com/samtools/htslib.git
3 cd htslib
4 autoheader
5 autoconf
6 ./configure --prefix=${HOME}/lib/htslib
7 make
8 make install
9

(continues on next page)

4 Chapter 2. Full Installation

MuG - CHi-C Pipeline Documentation, Release 0.1

(continued from previous page)

10 cd ${HOME}/lib
11 git clone https://github.com/samtools/samtools.git
12 cd samtools
13 autoheader
14 autoconf -Wno-syntax
15 ./configure --prefix=${HOME}/lib/samtools
16 make
17 make install

2.3.5 Install CHiCAGO

1 sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
→˓E298A3A825C0D65DFD57CBB651716619E084DAB9

2 sudo add-apt-repository 'deb [arch=amd64,i386] https://cran.rstudio.com/bin/linux/
→˓ubuntu xenial/'

3 sudo apt-get update -qq
4 sudo apt-get install r-base-core
5 sudo apt-get install python-rpy2
6

7

8 cd ${HOME}/lib
9 sudo apt-get install libtbb-dev

10 sudo apt-get install libssl-dev
11 cd ${HOME}/C-HiC/
12 echo "R_LIB=${HOME}/R" > ${HOME}/.Renviron
13 echo "options(repos = c(CRAN = 'http://mirrors.ebi.ac.uk/CRAN/'))" > ${HOME}/.Rprofile
14 echo ".libPaths('~/R')" >> ${HOME}/.Rprofile
15 echo 'message("Using library:", .libPaths()[1])' >> ${HOME}/.Rprofile
16 sudo Rscript CHiC/tool/scripts/install_packages.R
17

18 cd ${HOME}/C-HiC/CHiC/tool/scripts/
19 wget https://bitbucket.org/chicagoTeam/chicago/raw/

→˓e288015f75d36c5367d1595e0ac8099f2ce82aa1/chicagoTools/runChicago.R
20 wget https://bitbucket.org/chicagoTeam/chicago/raw/

→˓e288015f75d36c5367d1595e0ac8099f2ce82aa1/chicagoTools/bam2chicago.sh
21 wget https://bitbucket.org/chicagoTeam/chicago/raw/

→˓e288015f75d36c5367d1595e0ac8099f2ce82aa1/chicagoTools/makeDesignFiles.py
22 chmod +x bam2chicago.sh

2.4 Setup the symlinks

1 cd ${HOME}/bin
2

3

4

5 ln -s ${HOME}/lib/hicup_v0.6.1/* ${HOME}/bin/
6

7 ln -s ${HOME}/lib/bowtie2-2.3.4-linux-x86_64/bowtie2 bowtie2
8 ln -s ${HOME}/lib/bowtie2-2.3.4-linux-x86_64/bowtie2-align-s bowtie2-align-s
9 ln -s ${HOME}/lib/bowtie2-2.3.4-linux-x86_64/bowtie2-align-l bowtie2-align-l

10 ln -s ${HOME}/lib/bowtie2-2.3.4-linux-x86_64/bowtie2-build bowtie2-build
11 ln -s ${HOME}/lib/bowtie2-2.3.4-linux-x86_64/bowtie2-build-s bowtie2-build-s

(continues on next page)

2.4. Setup the symlinks 5

MuG - CHi-C Pipeline Documentation, Release 0.1

(continued from previous page)

12 ln -s ${HOME}/lib/bowtie2-2.3.4-linux-x86_64/bowtie2-build-l bowtie2-build-l
13 ln -s ${HOME}/lib/bowtie2-2.3.4-linux-x86_64/bowtie2-inspect bowtie2-inspect
14 ln -s ${HOME}/lib/bowtie2-2.3.4-linux-x86_64/bowtie2-inspect-s bowtie2-inspect-s
15 ln -s ${HOME}/lib/bowtie2-2.3.4-linux-x86_64/bowtie2-inspect-l bowtie2-inspect-l
16

17 ln -s ${HOME}/lib/htslib/bin/bgzip bgzip
18 ln -s ${HOME}/lib/htslib/bin/htsfile htsfile
19 ln -s ${HOME}/lib/htslib/bin/tabix tabix
20

21

22 ln -s ${HOME}/lib/samtools/bin/ace2sam ace2sam
23 ln -s ${HOME}/lib/samtools/bin/blast2sam.pl blast2sam.pl
24 ln -s ${HOME}/lib/samtools/bin/bowtie2sam.pl bowtie2sam.pl
25 ln -s ${HOME}/lib/samtools/bin/export2sam.pl export2sam.pl
26 ln -s ${HOME}/lib/samtools/bin/interpolate_sam.pl interpolate_sam.pl
27 ln -s ${HOME}/lib/samtools/bin/maq2sam-long maq2sam-long
28 ln -s ${HOME}/lib/samtools/bin/maq2sam-short maq2sam-short
29 ln -s ${HOME}/lib/samtools/bin/md5fa md5fa
30 ln -s ${HOME}/lib/samtools/bin/md5sum-lite md5sum-lite
31 ln -s ${HOME}/lib/samtools/bin/novo2sam.pl novo2sam.pl
32 ln -s ${HOME}/lib/samtools/bin/plot-bamstats plot-bamstats
33 ln -s ${HOME}/lib/samtools/bin/psl2sam.pl psl2sam.pl
34 ln -s ${HOME}/lib/samtools/bin/sam2vcf.pl sam2vcf.pl
35 ln -s ${HOME}/lib/samtools/bin/samtools samtools
36 ln -s ${HOME}/lib/samtools/bin/samtools.pl samtools.pl
37 ln -s ${HOME}/lib/samtools/bin/seq_cache_populate.pl seq_cache_populate.pl
38 ln -s ${HOME}/lib/samtools/bin/soap2sam.pl soap2sam.pl
39 ln -s ${HOME}/lib/samtools/bin/varfilter.py varfilter.py
40 ln -s ${HOME}/lib/samtools/bin/wgsim wgsim
41 ln -s ${HOME}/lib/samtools/bin/wgsim_eval.pl wgsim_eval.pl
42 ln -s ${HOME}/lib/samtools/bin/zoom2sam.pl zoom2sam.pl

2.5 Prepare the Python Environment

2.5.1 Install APIs and Pipelines

Checkout the code for the DM API and the C-HiC pipelines:

1 cd ${HOME}/code
2 pyenv activate C-HiC
3 pip install --upgrade setuptools pip
4 pip install git+https://github.com/Multiscale-Genomics/mg-dm-api.git
5 pip install git+https://github.com/Multiscale-Genomics/mg-tool-api.git
6 pip install git+https://github.com/Multiscale-Genomics/mg-process-fastq.git
7

8 git clone https://github.com/pabloacera/C-HiC.git
9 cd C-HiC

10 pip install -e .
11 pip install -r requirements.txt
12 pip install dill

6 Chapter 2. Full Installation

CHAPTER 3

Pipelines

3.1 Map and parse CHi-C reads

This pipeline will take as input two fastq files, RE sites, the genome indexed with GEM and the same genome in
FASTA file. This pipeline uses TADbit to map, filter and produce a bed file that will be used later on to produce bam
file compatible with CHiCAGO algorithm. More information about filtering and mapping https://3dgenomes.github.
io/TADbit/

3.1.1 Running from the command line

Parameters

config [str] Configuration JSON file

in_metadata [str] Location of input JSON metadata for files

out_metadata [str] Location of output JSON metadata for files

Returns

Wd [folders and files] path to the working directory where the output files are

Example

REQUIREMENT - Needs two fastq files single end, FASTA genome and bowtie2 indexed genome.

When running the pipeline on a local machine without COMPSs:

1 python process_hicup.py \
2 --config tests/json/config_hicup.json \
3 --in_metadata tests/json/input_hicup.json \

(continues on next page)

7

https://3dgenomes.github.io/TADbit/
https://3dgenomes.github.io/TADbit/

MuG - CHi-C Pipeline Documentation, Release 0.1

(continued from previous page)

4 --out_metadata tests/json/output_hicup.json \
5 --local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

1 runcompss \
2 --lang=python \
3 --library_path=${HOME}/bin \
4 --pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \
5 --log_level=debug \
6 process_fastq2bed.py \
7 --config tests/json/config_hicup.json \
8 --in_metadata tests/json/input_hicup.json \
9 --out_metadata tests/json/output_hicup.json

3.1.2 Methods

class process_hicup.process_hicup(configuration=None)
This class run hicup tool which run hicup, doing the alignment and filtering of the reads and convert them into
a BAM file.

run(input_files, metadata, output_files)
This is the main function that runs

Parameters

• input_files (dict) – fastq1 fastq2

• metadata (dict) –

• output_files (dict) –

out_dir: str directory to write the output

Returns

• results (bool)

• output_metadata (dict)

3.2 Create CHiCAGO input RMAP

3.3 Create CHiCAGO input BAITMAP

3.4 Create CHiCAGO input Design files

This script use as input .rmap and .baitmap files and generate the Design files. NPerBin file (.npb): <baitID> <Total no.
valid restriction fragments in distance bin 1> . . . <Total no. valid restriction fragments in distance bin N>, where the
bins map within the “proximal” distance range from each bait (0; maxLBrownEst] and bin size is defined by the binsize
parameter. NBaitsPerBin file (.nbpb): <otherEndID> <Total no. valid baits in distance bin 1> . . . <Total no. valid baits
in distance bin N>, where the bins map within the “proximal” distance range from each other end (0; maxLBrownEst]
and bin size is defined by the binsize parameter. Proximal Other End (ProxOE) file (.poe): <baitID> <otherEndID>
<absolute distance> for all combinations of baits and other ends that map within the “proximal” distance range from

8 Chapter 3. Pipelines

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

MuG - CHi-C Pipeline Documentation, Release 0.1

each other (0; maxLBrownEst]. Data in each file is preceded by a comment line listing the input parameters used to
generate them.

3.4.1 Running from the command line

Parameters

config [str] Configuration JSON file

in_metadata [str] Location of input JSON metadata for files

out_metadata [str] Location of output JSON metadata for files

Returns

“nbpb” : .nbpb file “npb” : .npb file “poe” : .poe file

Example

REQUIREMENT - Needs RMAP and BAITMAP files

When running the pipeline on a local machine without COMPSs:

1 python process_design.py \
2 --config tests/json/config_design.json \
3 --in_metadata tests/json/input_design.json \
4 --out_metadata tests/json/output_design.json \
5 --local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

1 runcompss \
2 --lang=python \
3 --library_path=${HOME}/bin \
4 --pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \
5 --log_level=debug \
6 process_design.py \
7 --config tests/json/config_design.json \
8 --in_metadata tests/json/input_design.json \
9 --out_metadata tests/json/output_design.json

3.4.2 Methods

class process_design.process_design(configuration=None)
This class generates the Design files and chinput files, imput for CHiCAGO. Starting from rmap and baitmap
and capture HiC BAM files.

run(input_files, metadata, output_files)
Main function to run the tools, MakeDesignFiles_Tool.py and bam2chicago_Tool.py

Parameters

3.4. Create CHiCAGO input Design files 9

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

MuG - CHi-C Pipeline Documentation, Release 0.1

• input_files (dict) – designDir: path to the folder with .rmap and .baitmap files
rmapFile: path to the .rmap file baitmapFile: path to the .baitmap file bamFile: path to the
capture HiC bamfiles

• metadata (dict) – input metadata

• output_files (dict) – outPrefixDesign : Path and name of the output prefix, rec-
ommend to be the same as rmap and baitmap files. sample_name: Path and name of the
.chinput file

Returns

• bool

• output_metadata

3.5 Convert BAM file into chicago input files .chinput

3.6 Data normalization and peak calling

This pipeline runs the normalization of the data and call the real chomatine interactions

3.6.1 Running from the command line

Parameters

config [str] Configuration JSON file

in_metadata [str] Location of input JSON metadata for files

out_metadata [str] Location of output JSON metadata for files

Returns

output_dir: directory with all output folders and files

Example

REQUIREMENT - Needs a reference genome

• Needs file with the capture sequences with FASTA format

– settings file

– design dir: .rmap .baitmap .npb .nbpb .poe

When running the pipeline on a local machine without COMPSs:

1 python process_run_chicago.py \
2 --config tests/json/config_chicago.json \
3 --in_metadata tests/json/input_chicago.json \
4 --out_metadata tests/json/output_chicago.json \
5 --local

10 Chapter 3. Pipelines

MuG - CHi-C Pipeline Documentation, Release 0.1

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/ software-
and-apps/software-list/comp-superscalar/):

1 runcompss \
2 --lang=python \
3 --library_path=${HOME}/bin \
4 --pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \
5 --log_level=debug \
6 process_runChicago.py \
7 --config tests/json/config_chicago.json \
8 --in_metadata tests/json/input_chicago.json \
9 --out_metadata tests/json/output_chicago.json

3.6.2 Methods

class process_run_chicago.process_run_chicago(configuration=None)
Function for processing capture Hi-C fastq files. Files are aligned, filtered and analysed for Cpature Hi-C peaks

run(input_files, metadata, output_files)
This main function that run the chicago pipeline with runChicago.R wrapper

Parameters

• input_files (dict) – location with the .chinput files. chinput_file: str in case there is
one input file chinput_file: comma separated list in case there is more than one input file.

• metadata (dict) – Input metadata, str

• output (dict) – output file locations

Returns

• output_files (dict) – Folder location with the output files

• output_metadata (dict) – Output metadata for the associated files in output_files

3.7 Run the entire CHi-C pipeline

3.7. Run the entire CHi-C pipeline 11

https://www.bsc.es/research-and-development/

MuG - CHi-C Pipeline Documentation, Release 0.1

12 Chapter 3. Pipelines

CHAPTER 4

Tools for processing fastq C-HiC files

4.1 Map and parser reads

4.1.1 hicup_tool

class CHiC.tool.hicup_tool.hicup(configuration=None)
Tool to run hicup, from fastq to bam files

digest_genome(genome_name, re_enzyme, genome_loc, re_enzyme2)
This function takes a genome and digest it using a restriction enzyme specified

Parameters

• genome_name (str) – name of the output genome

• re_enzyme (str) – name of the enzyme used to cut the genome format example
A^GATCT,BglII .

• genome_loc (str) – location of the genome in FASTA format

• re_enzyme2 (str) – Restriction site 2 refers to the second, optional (other DNA shear-
ing techniques such as sonication may be used) enzymatic digestion. This restriction site
does NOT form a Hi-C ligation junction. This is the restriction enzyme that is used when
the Hi-C sonication protocol is not followed. Typically the sonication protocol is followed.

static get_hicup_params(params)
Function to handle to extraction of commandline parameters and formatting them for use with hicup

Parameters params (dict) –

--bowtie Specify the path to Bowtie

--bowtie2 Specify the path to Bowtie 2

--config Specify the configuration file

--digest Specify the digest file listing restriction fragment co-
ordinates

13

MuG - CHi-C Pipeline Documentation, Release 0.1

--example Produce an example configuration file

--format Specify FASTQ format Options: Sanger,
Solexa_Illumina_1.0, Illumina_1.3, Illumina_1.5

--help Print help message and exit

--index Path to the relevant reference genome Bowtie/Bowtie2
indices

--keep Keep intermediate pipeline files

--longest Maximum allowable insert size (bps)

--nofill Hi-C protocol did NOT include a fill-in of sticky ends
prior to ligation step and therefore FASTQ reads shall
be truncated at the Hi-C restriction enzyme cut site (if
present) sequence is encountered

--outdir Directory to write output files

--quiet Suppress progress reports (except warnings)

--shortest Minimum allowable insert size (bps)

--temp Write intermediate files (i.e. all except summaryfiles
and files generated by HiCUP Deduplicator) to a speci-
fied directory

--threads Specify the number of threads, allowing simultaneous
processing of multiple files

--version Print the program version and exit

--zip Compress output

Returns

Return type list

hicup_alig_filt(params, genome_digest, genome_index, genome_loc, fastq1, fastq2, outdir_tar)
This function aling the HiC read into a reference genome and filter them

Parameters

• bowtie2_loc –

• genome_index (str) – location of genome indexed with bowtie2

• digest_genome (str) – location of genome digested

• fastq1 (str) – location of fastq2 file

• fastq2 (str) – location of fastq2

Returns

Return type Bool

hicup_alig_filt_runner(**kwargs)
This function runs the hicup_alig_filt

Parameters

• bowtie2_loc –

• genome_index (str) – location of genome indexed with bowtie2

14 Chapter 4. Tools for processing fastq C-HiC files

MuG - CHi-C Pipeline Documentation, Release 0.1

• digest_genome (str) – location of genome digested

• fastq1 (str) – location of fastq2 file

• fastq2 (str) – location of fastq2

Returns

Return type Bool

run(input_files, metadata, output_files)
Function that runs and pass the parameters for all the functions

Parameters

• input_files (dict) –

• metadata (dict) –

• output_files (dict) –

untar_index(genome_file_name, genome_idx, bt2_1_file, bt2_2_file, bt2_3_file, bt2_4_file,
bt2_rev1_file, bt2_rev2_file)

Extracts the Bowtie2 index files from the genome index tar file. :param genome_file_name: Location string
of the genome fasta file :type genome_file_name: str :param genome_idx: Location of the Bowtie2 index
file :type genome_idx: str :param bt2_1_file: Location of the <genome>.1.bt2 index file :type bt2_1_file:
str :param bt2_2_file: Location of the <genome>.2.bt2 index file :type bt2_2_file: str :param bt2_3_file:
Location of the <genome>.3.bt2 index file :type bt2_3_file: str :param bt2_4_file: Location of the
<genome>.4.bt2 index file :type bt2_4_file: str :param bt2_rev1_file: Location of the <genome>.rev.1.bt2
index file :type bt2_rev1_file: str :param bt2_rev2_file: Location of the <genome>.rev.2.bt2 index file
:type bt2_rev2_file: str

Returns Boolean indicating if the task was successful

Return type bool

4.2 Create CHiCAGO input files

4.2.1 makeRmap

4.2.2 makeBaitmap

4.2.3 makeDesignFiles

class CHiC.tool.makeDesignFiles.makeDesignFilesTool(configuration=None)
Tool for makeing the design files as part of the input for Chicago capture Hi-C

static get_design_params(params)
This function handle chicago parameters, selecting the given ones and passing to the command line.

makeDesignFiles(**kwargs)
make the design files and store it in the specify design folder. It is a wrapper of makeDesignFiles.py

Parameters

• designDir (str,) – Path to the folder with the output files(recommended the same
folder as .map and .baitmap files).

• parameters (dict,) – list of parameter already selected by
get_makeDesignFiles_params().

4.2. Create CHiCAGO input files 15

MuG - CHi-C Pipeline Documentation, Release 0.1

Returns

• bool

• outFilePrefix (str) – writes the output files in the defined location

run(input_files, input_metadata, output_files)
The main function to run makeDesignFiles.

Parameters

• input_files (dict) – designDir : path to the designDir containin .rmap and .baitmap
files

• input_metadata (dict) –

• output_files (dict) –

outFilePrefix [path to the output folder and prefix name of files] example:
“/folder1/folder2/prefixname”. Recommended to use the path to designDir and the same
prefix as .rmap and .baitmap

Returns

• output_files (dict) – List of location for the output files.

• output_metadata (dict) – List of matching metadata dict objects.

4.3 Convert bam files into chicago input

4.3.1 bam2chicago

4.4 Normalize data and call C-HiC peaks

4.4.1 run_chicago

class CHiC.tool.run_chicago.ChicagoTool(configuration=None)
tool for running the CHiCAGO algorithm

chicago(**kwargs)
Run and annotate the Capture-HiC peaks. Chicago will create 4 folders under the outpu_prefix data :
output_index.Rds –> chicago data saved on Rds format output_index_params.txt –> parameters used to run
Chicago output_index.export_format –> chicago output in the chosen format diag_plots : 3 plots to assest
the quality of the output (see CHicago Capture-HiC documentation for details) enrichment_data: files for
the feature enrichment output (in case is used) examples: output_index_proxExamples.pdf: random chosen
peaks showing interactions regions see http://regulatorygenomicsgroup.org/chicago for more information

Parameters

• input_files (str ot comma separated list if there is more
than one replicate) –

• output_prefix (str) –

• output_dir (str (whole path for the output)) –

• params (dict) –

Returns writes the output files in the defined location

16 Chapter 4. Tools for processing fastq C-HiC files

http://regulatorygenomicsgroup.org/chicago

MuG - CHi-C Pipeline Documentation, Release 0.1

Return type bool

static get_chicago_params(params)
Function to handle to extraction of commandline parameters and formatting them for use in the aligner for
BWA ALN

Parameters params (dict) –

Returns

Return type list

run(input_files, input_metadata, output_files)
The main function to run chicago for peak calling. The input files are .chinput and are transformed from
BAM files using bam2chicago.sh input files could be just one file or a comma separated files from more
than one biological replicate. Technical replicates should be pooled to one .chinput

Parameters

• input_files (dict) – list of .chinput files, or str with a single .chinput file

• input_metadata (dict) –

• output_files (dict with the output path) –

Returns

• output_files (Dict) – List of locations for the output files,

• output_metadata (Dict) – List of matching metadata dict objects

static untar_chinput(chinput_tar)
This function take as input the tar chinput

Parameters chinput_tar (str) – path to the tar file, the tar files should have the same prefix
name as the tar file

Returns

Return type list of untar files

4.4. Normalize data and call C-HiC peaks 17

MuG - CHi-C Pipeline Documentation, Release 0.1

18 Chapter 4. Tools for processing fastq C-HiC files

CHAPTER 5

Architectural Design Record

5.1 25-09-2018 handling_chr_header branch merge with master

This rmap_tool.py from this branch take the chromosome format from the used the reference genome and output a file
with two columns, dictionary like with number of the chromosome and the name of the chromsome from the reference
genome. example 1 chr1 2 chr2 3 chr3 ect. . .

This file is passed to the makeBaitmap.py script and generate the .batimap file with the corresponding chromsome
name. This is necesary as the rtrees used in makeBaitmap.py needs an integer instead of “chr” or any other format.

5.2 15-10-2018 mm_mods_for_makebaitmaps branch merge with
master

This branch contains some modifications from Mark to solve issues with pyCOMPSs regarding makeBaitmap.py tool

19

MuG - CHi-C Pipeline Documentation, Release 0.1

20 Chapter 5. Architectural Design Record

CHAPTER 6

License

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

21

http://www.apache.org/licenses/

MuG - CHi-C Pipeline Documentation, Release 0.1

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

22 Chapter 6. License

MuG - CHi-C Pipeline Documentation, Release 0.1

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets “{}” replaced with your own identifying information. (Don’t in-
clude the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included
on the same “printed page” as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

23

http://www.apache.org/licenses/LICENSE-2.0

MuG - CHi-C Pipeline Documentation, Release 0.1

24 Chapter 6. License

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

25

MuG - CHi-C Pipeline Documentation, Release 0.1

26 Chapter 7. Indices and tables

Python Module Index

p
process_design, 8
process_hicup, 7
process_run_chicago, 10

t
tool, 13

27

MuG - CHi-C Pipeline Documentation, Release 0.1

28 Python Module Index

Index

C
chicago() (CHiC.tool.run_chicago.ChicagoTool method),

16
ChicagoTool (class in CHiC.tool.run_chicago), 16

D
digest_genome() (CHiC.tool.hicup_tool.hicup method),

13

G
get_chicago_params() (CHiC.tool.run_chicago.ChicagoTool

static method), 17
get_design_params() (CHiC.tool.makeDesignFiles.makeDesignFilesTool

static method), 15
get_hicup_params() (CHiC.tool.hicup_tool.hicup static

method), 13

H
hicup (class in CHiC.tool.hicup_tool), 13
hicup_alig_filt() (CHiC.tool.hicup_tool.hicup method),

14
hicup_alig_filt_runner() (CHiC.tool.hicup_tool.hicup

method), 14

M
makeDesignFiles() (CHiC.tool.makeDesignFiles.makeDesignFilesTool

method), 15
makeDesignFilesTool (class in

CHiC.tool.makeDesignFiles), 15

P
process_design (class in process_design), 9
process_design (module), 8
process_hicup (class in process_hicup), 8
process_hicup (module), 7
process_run_chicago (class in process_run_chicago), 11
process_run_chicago (module), 10

R
run() (CHiC.tool.hicup_tool.hicup method), 15
run() (CHiC.tool.makeDesignFiles.makeDesignFilesTool

method), 16
run() (CHiC.tool.run_chicago.ChicagoTool method), 17
run() (process_design.process_design method), 9
run() (process_hicup.process_hicup method), 8
run() (process_run_chicago.process_run_chicago

method), 11

T
tool (module), 13

U
untar_chinput() (CHiC.tool.run_chicago.ChicagoTool

static method), 17
untar_index() (CHiC.tool.hicup_tool.hicup method), 15

29

	Requirements and Installation
	Requirements
	Installation

	Full Installation
	Setup the System Environment
	Setup pyenv and pyenv-virtualenv
	Installation Process
	Setup the symlinks
	Prepare the Python Environment

	Pipelines
	Map and parse CHi-C reads
	Create CHiCAGO input RMAP
	Create CHiCAGO input BAITMAP
	Create CHiCAGO input Design files
	Convert BAM file into chicago input files .chinput
	Data normalization and peak calling
	Run the entire CHi-C pipeline

	Tools for processing fastq C-HiC files
	Map and parser reads
	Create CHiCAGO input files
	Convert bam files into chicago input
	Normalize data and call C-HiC peaks

	Architectural Design Record
	25-09-2018 handling_chr_header branch merge with master
	15-10-2018 mm_mods_for_makebaitmaps branch merge with master

	License
	Indices and tables
	Python Module Index

